Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer.
نویسندگان
چکیده
The Drosophila doublesex female-specific splicing enhancer consists of two classes of regulatory elements, six 13-nucleotide repeat sequences, and a single purine-rich element (PRE). Here, we show that the Drosophila regulatory proteins Transformer (Tra) and Transformer 2 (Tra2) recruit different members of the SR family of splicing factors to the repeats and the PRE. The complexes formed on the repeats in HeLa cell extract consist of Tra, Tra2, and the SR protein 9G8. in Drosophila Kc cell extract, Tra and Tra2 recruit the SR protein RBP1 to the repeats. These proteins are arranged in a specific order on the repeats, with the SR protein at the 5' end of each repeat, and Tra2 at each 3' end. Although Tra did not cross-link strongly to the repeats, its presence was essential for the binding of Tra2 to the 3' end of the repeat. Individual SR proteins were also recruited to the PRE by Tra and Tra2, but in this case they were SF2/ASF and dSRp30 in HeLa and Drosophila cell extracts, respectively. The binding of Tra2, Tra, and the specific SR proteins to the repeats or the PRE was highly cooperative within each complex. Thus, Tra2, which contains a single RNA binding domain, can recognize distinct sequences in the repeats and the PRE in conjunction with specific SR proteins. These observations show that the protein composition of each complex is determined by the RNA recognition sequence and specific interactions between SR proteins and Tra and Tra2.
منابع مشابه
The splicing regulators Tra and Tra2 are unusually potent activators of pre-mRNA splicing
Sexual differentiation in Drosophila is regulated through alternative splicing of doublesex. Female-specific splicing is activated through the activity of splicing enhancer complexes assembled on multiple repeat elements. Each of these repeats serves as a binding platform for the cooperative assembly of a heterotrimeric complex consisting of the SR proteins Tra, Tra2 and 9G8. Using quantitative...
متن کاملA splicing enhancer complex controls alternative splicing of doublesex pre-mRNA.
Female-specific splicing of Drosophila doublesex (dsx) pre-mRNA is regulated by the products of the transformer (tra) and transformer 2 (tra2) genes. In this paper we show that Tra and Tra2 act by recruiting general splicing factors to a regulatory element located downstream of a female-specific 3' splice site. Remarkably, Tra, Tra2, and members of the serine/arginine-rich (SR) family of genera...
متن کاملSelection and characterization of pre-mRNA splicing enhancers: identification of novel SR protein-specific enhancer sequences.
Splicing enhancers are RNA sequences required for accurate splice site recognition and the control of alternative splicing. In this study, we used an in vitro selection procedure to identify and characterize novel RNA sequences capable of functioning as pre-mRNA splicing enhancers. Randomized 18-nucleotide RNA sequences were inserted downstream from a Drosophila doublesex pre-mRNA enhancer-depe...
متن کاملThe SRm160/300 splicing coactivator is required for exon-enhancer function.
Exonic splicing enhancer (ESE) sequences are important for the recognition of splice sites in pre-mRNA. These sequences are bound by specific serine-arginine (SR) repeat proteins that promote the assembly of splicing complexes at adjacent splice sites. We have recently identified a splicing "coactivator," SRm160/300, which contains SRm160 (the SR nuclear matrix protein of 160 kDa) and a 300-kDa...
متن کاملThe mechanisms of a mammalian splicing enhancer
Exonic splicing enhancer (ESE) sequences are bound by serine & arginine-rich (SR) proteins, which in turn enhance the recruitment of splicing factors. It was inferred from measurements of splicing around twenty years ago that Drosophila doublesex ESEs are bound stably by SR proteins, and that the bound proteins interact directly but with low probability with their targets. However, it has not b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 10 16 شماره
صفحات -
تاریخ انتشار 1996